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Contact symmetries and integrable non-linear 
dynamical systems 

JosC M Cervero and J Villarroel 
Departmento d e  Fisica Teorica, Facultad de Ciencias, Universidad d e  Salamanca, 37008 
Salamanca, Spain 

Received 26 May 1987 

Abstract. We present a systematic method of classifying and  constructing invariants for 
Lagrangians containing arbitrary polynomial non-linear potentials. I t  is based on the 
assumption that these Lagrangians are  invariant under contact groups of transformations. 
For a finite number of degrees of freedom we can prove integrability for a large class of 
polynomial potentials. The method can be extended in several directions. 

1. Introduction 

One of the outstanding problems in theoretical physics nowadays lies in the study of 
non-linear dynamical systems and in particular the identification of those which are 
integrable. A fundamental question along this line is obviously to find a systematic 
way of finding which features are common to all those systems sharing this property. 
At the same time it would also be extremely interesting to develop a method to discern 
whether or not a dynamical system is integrable. Various alternatives have been 
proposed. Some authors (Ablowitz er a1 1980, Ramani er a1 1982) have pointed out 
that one of the common features of integrable systems is that their solutions have the 
PainlevC property. According to this conjecture a number of non-linear dynamical 
systems have been studied, some of them possessing the so-called naive Painlevi 
property and  others obeying several refinements of this same property. Certainly 
PainlevC’s conjecture must have something to d o  with integrability but it is not known, 
at least to the present authors, whether this conjecture can be finally established as a 
general property of these dynamical systems. 

A different proposal (not neccessarily unrelated to the previous one)  is that they 
admit some extra invariance group as a dynamical symmetry which could be a signal 
of integrability. However, point symmetries d o  not seem to be of any use here and 
we have to move to more general kinds of symmetry groups, among which the so-called 
contact groups appear to be an  interesting choice. These symmetries contain coordin- 
ates and velocities in the transformation and have been studied in different frameworks 
for many years (Cervero and Boya 1975, see also Campbell 1966). In a recent paper 
(Sahadevan and Lakshmanan 1986) the idea of using contact symmetry groups in 
non-linear dynamical systems with few degrees of freedom has been developed with 
success. These authors are able to recover two well known integrable systems (the 
Henon-Heiles potential and the two coupled anharmonic oscillators) and to find their 
first integrals as well. I f  such a relationship between contact symmetries and integrabil- 
ity can finally be established, an important step towards the complete classification of 
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integrable non-linear dynamical systems would be possible, at least for a finite number 
of degrees of freedom. This paper is intended to be another contribution in this 
direction. 

We study then, for some general potentials, those systems possessing a dynamical 
symmetry of the kind described above. Our  conclusion is that for the potentials in the 
range studied, only those fulfilling the latter conjecture are integrable. Indeed, it would 
be nice to find a sort of proof that this property must be true for all possible integrable 
systems. We have not achieved this so far but work in this direction is now in progress. 
However, the property has the quality of being constructive. That is to say, it not only 
serves as a test of integrability but also provides us with the integrals of the dynamical 
system. 

We must say, however, that our viewpoint differs from that of Sahadevan and  
Lakshmanan (1986) since we only consider the contact symmetry group of the 
Lagrangian and not the whole group of invariance of the equations of motion. The 
reason for this lies in the fact that it is the former, and not the latter, which really 
matters for integrability and  from which the Noether invariants are obtained directly. 

Let us consider a two-dimensional Lagrangian system given by 

L=+(.t;+x:)- V ( X , , X J .  (1) 
In order for this dynamical system to be (quasi-)invariant under the infinitesimal 
contact transformations 

x: = XI + & 4 , ( X , ,  x,, t )  ( 2 a )  

x ;  = X2+ & $ * ( X , ,  x,, t )  i = 1 , 2  ( 2 b )  
t ' =  t + &cp(x,, x,, t )  ( 2 c )  

S( L )  + L+ = d h / d t  (3) 
where S( ) = cp a l a r  + d/dx, + (8, - x,cp) a/ax, is the extended infinitesimal generator 
for this contact symmetry group and A =  A(x,, x,, t )  is a function to be determined 
from (3). Once we have solved ( 3 )  we obtain the constants of motion as 

then the following equation, which also defines '4, must hold (Lutzky 1979): 

I=(4,-Xlcp)aL/aX,+cpL-,4 (4) 
where we sum over dummy indexes. In general, this expression will depend on arbitrary 
constants; let us call them a, p, y, . . . in the following way: 

I = c u l l  ( X I ,  x,, t ) + p r , ( x , ,  x,, t ) + y13( x, , xr , t )  + . . . . 
As the parameters cy, P ,  y are free, if I has to be an  integral of the motion, it is 
necessary that any of the 1 separately be also a constant of motion. So, in this way, 
we obtain not one, but as many integrals of motion as arbitrary constants on which I 
depends. 

We shall then look for a solution of equation (3). While it is possible to obtain 
the general solution of these equations for a quadratic Lagrangian (Cervero and 
Villarroel 19841, i t  would be too optimistic to hope to d o  so for a higher-degree 
potential. Thus, we have to find a useful ansatz. Let us suppose that cp and 9, are 
given by 

( 5 a )  
( 5 6 )  
(5c) 

cp = a,+ a , x ,  + a2xz 

9, = bo+ b,x l  + b2x7 
$2 = CO+ c,x, + czx2 
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where ai,  bi and c, ( i  = 0,  1 , 2 )  are general functions of x , ,  x ,  and t ,  but not of XI, x2. 
Thus, when inserting ( 5 )  into (3)  every coefficient of amy", m, n = 1, 2, 3 ,  4, must be 
set equal to zero, which gives rise to the following system of PDE:  

ab, ab2 ac, ac -+-+-+L=o 
ax, a t  ax,  a t  

%+9 ax,  a t  - 1 2 [ *+ a t  a,(:) + a.(%)] = 0 

( 6 k )  

The function .I has to be determined by demanding compatibility of ( 6 h ) - ( 6 k ) .  
In  the following section we will consider separately the almost trivial case of 

separable potentials (for which the solution is known)  to see whether the method 
works, and  will then turn our attention to the more interesting case of non-linear 
non-separable potentials. 

2. The separable case 

Let us consider the Lagrangian given by 

L = j m ( x . f + x : )  + P , ( x , ) +  P 2 ( x 2 )  (7 )  

where P , ( x , )  and P.(xz) are arbitrary polynomials of their arguments. Although this 
system is clearly integrable, it is interesting to know what is the subjacent symmetry 
i f  i t  exists. Inserting V ( x I x 2 )  = P , ( x , ) + P 2 ( x 2 )  into the general system ( 6 )  we obtain 
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after some lengthy work the general solution in the form 

v = an ( 8 a )  

4 ,  = ( a  + i a o ) x l  + b2x2+ p (8b) 

I,LJ~ = -b2xl + ( 6  + i a o ) x 2 +  y 

A = (2a  + a o ) P , ( x , )  + (26 + ao)P2( x2) + px, + yXz 
where an and b2 are arbitrary functions of ( x , ,  x2, t )  and a ,  p ,  y and 6 are integration 
constants. Two constants of motion are found as? 

I ,  = ; x : - P , ( x , )  ( 9 a )  

12=;Xs:-P2(X2). (9b)  

As we have just seen, the group we have obtained depends on arbitrary functions 
a,  and b2 so it is an  infinite-parameter group. As we shall see later on, this fact also 
holds for all cases we will consider. It is not clear to us if such a property can be a 
general one for integrable systems but we conjecture that this could be the case. If 
such were always true we would be able to assign this property as a fundamental 
feature of integrable dynamical systems. 

3. The non-separable case 

Let us now turn to the obviously more interesting non-separable case. Consider now 
in (1) a general form of the potential such as 

V ( x , ,  x2) =Ax:+ Bx,x ;+  CX:+ Dx,x:+ E x ,  + Fx:x: (10) 

where A, B, C, D, E and F are, for the time being, arbitrary constants. Clearly the 
Lagrangian (1) for the potential (10) will not be integrable for any value of such 
constants. On the other hand, the invariance conditions (6) are not in general compat- 
ible except for some particular cases. They are, however, compatible for precisely 
those cases when the system is integrable. Inserting (10) into the system ( 6 )  we find 
it to be fulfilled if and only if 

C=ZD. (11) 

cp = a. (12a)  

4 ,  = ( a  + ! a ( ] ) i ,  + hzx,  (12b) 
42 = -b2xl + ( a  + px, + i a o ) x 2  (12c) 

A = F  B=”F I6 

The symmetry generators are given by 

where a,, and b2 are again arbitrary functions of (x , ,  x2,  t )  while a and p are integration 
constants. The integral associated with this symmetry is 

I =XIx2X2 - X,X;+ (;.:xi+ :X;’X~+&X?)A + (ax:+ x;x~+ ;( E / D ) x ; ) D .  (13) 
Another potential we have considered is 

V (  X, , x:) = -b( Ax:+ B x ~ )  - C X ~ X ~  - X : X ~  (14) 

+ Actually, t h e  integral of motion ( 4 )  now becomes I = 7n1,  + 2 S I z  
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where we have set the last coefficient to one since such a rescaling does not modify 
integrability. Working out the invariance conditions we find that they are fulfilled in 
only two cases: 

(i) A = B = 2, C = 1 (central potential) 
( i i )  A=' B='4  C=' 

40, 4 ,  10. 

Case (i) is the trivial central force problem invariant under rotations. For case ( i i )  the 
symmetry generators are the same as for (12a ,  b, c ) .  We can also find the following 
invariant: 

( 1 5 )  I = -i? IxI + x  1 x I x I - ( L X b X  40 I 2 + $ x ; x ; + 2 x 4 x 3  5 1 2 ) .  

Finally consider the potential given in (Ramani et a1 1982) 

Our technique also works for this case yielding the invariant 

and the symmetry generators are 

cp = a0 ( 1 7 a )  

( 1 7 b )  

r L , = - ( p + b 2 ) i 1 + ( a + ~ a , ) x 2 .  ( 1 7 c )  

= (;a,+ a + p x 2 ) i I  + b2xz 

We would like to show that our method also works for other kinds of potentials 
in more than two dimensions. As an  example (Calogero 1969) consider 

In this case, the compatibility of the system ( 6 )  indicates that it is sufficient to 
consider only point transformations. Therefore, restricting ourselves to these kind of 
transformations we obtain the following set of symmetry generators: 

SI = a / a t  

S2 = t a / a t  + X, a lax ,  

S,=a/ax,  +a/a.u,+a/ax, 

S5 = t ( a /ax ,  +a/ax,+a/ax,) i = 1, 2,3 .  
As expected, S , ,  S2 and S3 close the conformal one-dimensional group S O ( 2 , l ) .  

The associated constants of motion are 

1, = t l ,  -;x,.tr 
1 - 1 2  3 - I t  I, - f t x , i '  +:(.;+xi+ x i )  
I, = X I  + XI + i3 

1 5  = x, + xz+ x, - t l , .  
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which, although being explicitly time dependent, justify the integrability of the system. 
In  fact, introducing the new coordinates 

and using one of the integrals to solve for time (say I,) while another (say I,) is used 
to solve for R, we arrive at the following set of first integrals: 

B ’ = ( t 2 + & f - f ( & + T ] 7 j )  

P = R =+(a ,  + X 2 + X 3 )  

from which (Marchioro 1970) we would obtain the explicit solution of the equations 
of motion. 

We think this method can in principle work for any non-linear system restricted 
to a finite number of degrees of freedom as well as for polynomial-type potentials. 
Indeed, it could also be extended to non-polynomial interactions but then the difficulty 
of solving (61 would be considerably increased. 

4. Conclusions 

The analysis above points out that the existence of symmetry transformations is an  
inherent property of integrable systems. Such a symmetry must in principle be of 
contact nature although in some simple cases the transformation could be only point- 
like. The method is also constructive since once we have identified the symmetries of 
the dynamical system, we can integrate it readily by using Noether’s theorem. All 
these reasons point in the direction that contact invariance properties seem to be an 
unavoidable and useful ingredient in the study of integrability in non-linear dynamical 
systems. 
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